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Five-hundred dichotomously scored response patterns
were generated with sequentially independent (SI) item3 and 500 with
dependent (SD) items for each of thirty-six combinations of sampling
parameters (i.e., three test lengths, three sample sizes, and four
item ditticulty distributions). KR-20, KR-21, and Split-Half (S-H)
reliabilities were computed for these 36,000 response Natrices and
cumulative distribution functions, each based on 5n0 trials,
compilea. Comparison of the sampling distributions suggests tliat
there is more similarity between the SI and SD cumulative
distribution functions for KR-21 than KR-20, and either of these have
more similarity than S-H. For Kt; -20, KR-21, and S-H, the similarity
of sampling distributions under SI and SD varies directly with test
length: the longer the test, the more similar the distributions. On
the other hand, similarity varies inversely with sample size: the
larger the sample, the more dissimilar tFe distributions. For both SI
and SD item Nets, the expected value of KR-21 is less than or equal
to that of KR-20 which is less than of equal to the expected value of
S-H. Also, for both item sets, the standard error of S-H is greater
than that of KR-21 which is greater than or equal Lc) the standard
error of KR-20. The standard errors of the three reliability
estimates vary inversely vith sample size and test iehgth, for both
SI and SD items. In every cae, SD increased the expecteu value of
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INTRODUCTION

The general purpose of this study was to investigate the effects of

sequential dependence (SD) on the sampling distributions of three commonly

used reliability estimates -- Kuder-Richardson Formula 10 (KR20), Kuder-

Richardson Formula 21 (KR21), and odd-even Split-Halves (S-H).

Two items are sequentially independent (SI) if and only if the

success or nonsuccess on one does not affect the probability of success

on the other. Symbolically, if Si represents success on item i and Si

indicates failure, items i and j are seventially independent if and only

if P(Si 1 Si) P(Si) and P(Si 1 Si) P(Si)

Two items are sequentially iependent (SD) if and only if the success

or nonsuccess on one affects the probability of success on the other.

Symbolically, items i and j are sequentially dependent if and only if

P(Si 1 Si) 0 P(Si) and P(Si 1 Sj) 0 P(Si).

Iu practice, it is often the case that achievement tests contain two

or more items that are SD. The most obvious instance of SD is given by a

pair of items, one of which refers to the other and the solution of the

one is strictly contingent upon solution of the other. Frequently,

however, the sequential dependence between items is more subtle than in

this extreme case. Since SD does occur in practice and sit,ce the

classical reliability cdtimatea are often applied to these SD tests, it

IA important to investigate the effects of SD on the sampling distri-

butions of 0.1 three commonly used estimates.

In the present study, computational forms of KR2O and KR21 (Kuder
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and Richardson, 1937) were used, and the S-H coefficients were obtained

by applying the Spearmau-Brown (Spearman, 1910; Brown, 1910) formula to

the Pearson correlation between the scores made on the odd and even item

sets.

METHODOLOGY

The following sampling parameters were used:

Test Length Tests containing 20, 30 and 50 items.

Sample Size Sample sizes of 20, 32, and 52.

Item Difficulty Distribution Four different distributions of item diffi-

culty were used. Three of these distributions were constant difticulties

of .3, .5, and .7; and the fOurth was an equally-spaced rectangular

distribution of the following form:

Let i 1, 2, be the item index over the k items.

The difficulty for item i is .

ir+1

In this distribution, the items range in difficulty from -1-014- to 1.4

True Score Distribution For each of the four item difficulty distri-

butions, a symmetric unimodal distribution of true scores was forced in

the following way:

Let Di be the difficulty of item i, and mis, m23 and

m3s be selected so that:

Di (.25) Dimls + m2s (.50) Di + m33 (.25) Di .

In this notation, the subscript a is an index over the

n subjects, and the following relationships hold among

the weights:



mll m m12 m "' 6 mld , whcre d n/4

m2(d +l) 6 22(d+2) m m m2(3d-1)

m3(3d) m m3(3d+1) " m3r,

These conditions on the weights (ml, m2, m3) give a three-point distri-

bution of true scores for each parameter combination. The particular

weights used in the study are presented in Table 1.

TABLE 1

WEIGHTS USED TO FORM TRUE SCORE DISTRIBUTION

3

Difficulty Distribution mls m"is m3s

Rectangulsr .5 1.0 1.5

Constant .3 .5 1.0 1.5

Constant .5 .5 1.0 1.5

Constant .7 .7 1.0 1.3

From the preceding discussion, the probability of subject c correctly

answering item i is mls Di if 1 < s < n/4, m2s Di if n/4 e s e 3n/4, and

m3s Pi if 3n/4 < s < n, Tn this discussion the probability of success on

an item does not depend on performance on prior items, but only on the

relative position of the subject's true score. Thus, the items which

comprise ti.1 subject's teat &core are SI.

SD among items was induced by changing the probability of success on

a given item according to the subjects performance on the immediately

preceding item. Performance on item 1 is unaffecte4 by SD.
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In the ease of the equally-spaced rectangular distribution of item

difficulties, P(Si) = . The following dependence probabilities were

used:

P(Si I Si-1)

P(Si 1 SI_I) =
(k+1) (k-i+i)

If D is the constant diffi 'ilty for each of the three constant item

difficulty distributions, the dependence probabilities are:

P(Si 1 Si_1) =
k

P(Si I Si -1) a
D(k-Dk-1)

k-Dk

It may be easily shown that these dependence probabilities satisfy

the following necessary condition:

nr(i) n.P(Si) nr(i_l) P(Si
I Si-1) +

nw(1-1) P(Si Si -1)

where nr(i) Lb the number correctly answering item i, n i, sample size,

nr(i_l) is the number correctly answering item 1-1, and nw(i..1) is the

number incorrectly answering item 1-1.

The procedures of the study required generation of nine sequences of

pseudo-random numbers in the interval (0, 1). The sequences ranged from

200,000 to 1,300,000 in length, The multiplicative c9ngruence method

(Lehmer, 1951) was employed, using Pike and Hill's (1965) algorithm, to

generate the sequences.

Subject x Item response matrices were generated in an element-wise

manner by comparing the probability of success on each iten by each

subject with a pseudo-random number. The matrices were generated in
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pairs -- one matrix containing SI items and the other containing SD items.

The same random number was used for comparison in each matrix for a

given position.

Let XI be the n x k matrix of responses for the SI items and XD be

the n x k matrix of responses for the SD items. Also, let XIsi and XDsi

denote elements of these response matrices. Then, using Rsi for the

random number associated with position si, and Ssi for success on item

i by subject s, the matrices were generated in the following way:

If Rsi < P(Ssi), then Xloi = 1

If Red > P(Ssi), then XIsi = 0

If Rsi < P(Ssi
I Ssi-1)'

then XD = 1; otherwise XDsi = 0

If Rsi
1

P(Ssi I
Ssi-1), then XDsi = 0; otherwise XDsi = 1

RESULTS AND CONCLUSIONS

These Monte Carlo experiments were conducted on an IBM 7094 computer

using a Fortran Program written by the researcher (copies of the program

are available upon request). Five-hundred dichotomously stored response

patterns were generated with SI items and 500 with SD items for each of

the thirty-six coibinations of sampling parameters (i.e., three test

lengths, three sample sizes, and four item difficulty distributions).

KR20, KR21, and S-H were computed for each of these 36,000 response

matrices and their cumulative distribution functions, each based on 500

trials, compiled.

The Kolmogorov-Smirnov two-sample procedure (Siegel, 1956) was used

to compare the sampling distributions of the three estimates under. SI and

SD. Kolmogorov-Smirnov D values were obtained by computing the absolute
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value of the maximum vertical distance britween the cumulative distri-

bution functions. Considering all parameter combinations, the mean

absolute D values for the three estimates were

KR20

.307

KR21 S-H

.303 .333

6

Since Kolmogorov-Smirnov D values vary inversely with distribution

similarity, it may be concluded that there is more similarity between the

SI and SD cumulative distribution functions for KR21 than KR20, and

either of these have more similarity than S-H.

Meal absolute D values were also computed for the SI and SD

cumulative distribution functions under the various sampling conditions.

These means are presented in Table 2.

For KR20, KR21, and S-H, the similarity of their sampling distri-

butions under SI and SD varies directly with it length, i.e., the

longer the test, the more similar are the sampling distributions. On the

other hand, the similarity of the sampling distributions of the three

estimates under SI and SD varies inversely with sample size, i.e., the

larger the sample size, the more dissimilar are the sampling distributions.

The different item difficulty distributions effect different degrees of

similarity between SI and SD distributions. For both KR20 and KR21, the

order of similarity of the sampling distributions under SI and SD is:

constant .3, equally-spaced rectangular, constant .5, and constant .7%

For S-H, the order is equally-spaced rectangular, constant .3, constant

.5, and constant .7.

For both SI and SD item sets, the expected value of KR21 is less than

or ecina1 to that of KR20 which is less than or equal to the expected value
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TABLE 2

MEAN KOLtIOGOROV- SMIRNOV ABSCLUTE D VALUES
UNDER THE VARIOUS MONTE CARLO CONDITIONS

Difficulty Distribution XR20 KR21 S-H

Rectangular .23E .229 .274

Constant .5 .385 .350 .378

Constant .3 .196 .204 .285
Constant .7 .408 .427 .397

Test Lergth KR20 KR21 S-H

20 .422 .427 .463

30 .309 .29G .331
50 .190 .185 .205

Sample Size KR.40 KR21 S-H

20 .261 .265 .274

32 .297 .303 .329
52 .364 .339 .397

of S-H. Also% for both SI and SD item eels, the standard error of S-H is

greater than that of KR21 which is greater than or equal to the standard

error of KR20. The standa:d error of each of the three reliability

estimates varies inversely with sample size and test length, for both SI

and SD items. In every case, SD increased the expected value of the

estimate and decreased its standard error.



REFERENCES

Brown, W. "Some Experimental Results in the Correlation of Mental
Abilities," British gal of tlychology, Volume 3, 1910,
pp. 296-322.

Kuder, G. F. and Richardson, N. W. "The Theory of Estimation of Test
Reliability," Psychometrika, Volume 2, 1937, pp. 151-160.

Lehmer, D. H. "Mathematical Methods in Large Scale Computing Units,"
Annals of the Computation LaboIalou of Harvard University,
Volume 26, 1951, pp. 141-146.

Pike, M. C. and Hill, 1. D. "Algorithm 266: Pseudo-Random Numbers,"
Communications of the Association for Computing Machinery,
Volume 8, 1965, pp. 605-606.

Siegel, Sidney Nonparametric Statistics for the Behavioral Sciences,
New York: McGraw-Hill, 1956.

Spearman, C. "Correlation Calculated With Faulty nate," BritisL
Jwanal of Psychology, Volume 3, 1910, 271-295.

9


